Hodge Numbers from Picard–Fuchs Equations
نویسندگان
چکیده
Given a variation of Hodge structure over P with Hodge numbers (1, 1, . . . , 1), we show how to compute the degrees of the Deligne extension of its Hodge bundles, following Eskin–Kontsevich–Möller–Zorich, by using the local exponents of the corresponding Picard– Fuchs equation. This allows us to compute the Hodge numbers of Zucker’s Hodge structure on the corresponding parabolic cohomology groups. We also apply this to families of elliptic curves, K3 surfaces and Calabi–Yau threefolds.
منابع مشابه
2 00 4 Calculation of mixed Hodge structures , Gauss - Manin connections and Picard - Fuchs equations
In this article we introduce algorithms which compute iterations of Gauss-Manin connections, Picard-Fuchs equations of Abelian integrals and mixed Hodge structure of affine varieties of dimension n in terms of differential forms. In the case n = 1 such computations have many applications in differential equations and counting their limit cycles. For n > 3, these computations give us an explicit...
متن کامل2 1 Ju l 2 00 5 Hypergeometric series and Hodge cycles of four dimensional cubic hypersurfaces
In this article we find connections between the values of Gauss hypergeometric functions and the dimension of the vector space of Hodge cycles of four dimensional cubic hypersurfaces. Since the Hodge conjecture is well-known for those varieties we calculate values of Hypergeometric series on certain CM points. Our methods is based on the calculation of the Picard-Fuchs equations in higher dimen...
متن کامل0 A ug 2 00 6 Hypergeometric series and Hodge cycles of four dimensional cubic hypersurfaces
In this article we find connections between the values of Gauss hypergeometric functions and the dimension of the vector space of Hodge cycles of four dimensional cubic hypersurfaces. Since the Hodge conjecture is well-known for those varieties we calculate values of Hypergeometric series on certain CM points. Our methods is based on the calculation of the Picard-Fuchs equations in higher dimen...
متن کاملPeriods of Integrals on Algebraic Manifolds: Summary of Main Results and Discussion of Open Problems
0. Introduction 229 Par t I. Summary of main results 231 1. The geometric situation giving rise to variation of Hodge structure. . . . 231 2. Data given by the variation of Hodge structure 232 3. Theorems about monodromy of homology 235 4. Theorems about Picard-Fuchs equations (Gauss-Manin connex ion) . . . . 237 5. Global theorems about holomorphic and locally constant cohomology classes 242 6...
متن کاملLattice Green functions and Calabi–Yau differential equations
By making the connection between four-dimensional lattice Green functions (LGFs) and Picard–Fuchs ordinary differential equations of Calabi–Yau manifolds, we have given explicit forms for the coefficients of the fourdimensional LGFs on the simple-cubic and body-centred cubic lattices, in terms of finite sums of products of binomial coefficients, and have shown that the corresponding four-dimens...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017